occupying the axial sites. The geometry is similar to that reported for the complexes of the ligand with triphenyltin chloride and nitrate (Nardelli et al., 1979; Pelizzi \& Pelizzi, 1980a). All three complexes are dinuclear with respect to the Sn atoms they contain: the $\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}\right\}_{2}$ ligand bridges the Sn atoms through the O atoms and the molecule has a crystallographic centre of symmetry lying in the middle of the $\mathrm{CH}_{2}-\mathrm{CH}_{2}$ bond. The $\mathrm{Sn}-\mathrm{O}-\mathrm{P}$ angle in the title compound $\left[147.2(3)^{\circ}\right]$ is close to that in the nitrate analogue $\left[148.3(8)^{\circ}\right]$ (Nardelli et al., 1979), but significantly less than the value of $161.8(2)^{\circ}$ observed in the chloro complex (Pelizzi \& Pelizzi, 1980a). The odd result for the latter complex has been ascribed to steric effects of the phenyl rings which although located in the equatorial plane are bent towards the $\mathrm{O}-\mathrm{P}$ vector (Sn is $0.18 \AA$ from the equatorial plane towards the Cl atom). In the title compound, the metal atom is only $0.001 \AA$ from the equatorial plane towards the Br atom, and the longer $\mathrm{Sn}-\mathrm{O}$ and $\mathrm{P}=\mathrm{O}$ bonds together with larger $\mathrm{O}-\mathrm{P}-\mathrm{CH}_{2}$ bond angle minimize the steric hindrance. The dihedral angles that the phenyl rings make with the equatorial plane are $40 \cdot 6(5)^{\circ}$ for ring $\mathrm{C}(11)-\mathrm{C}(16), 70 \cdot 1(4)^{\circ}$ for ring $\mathrm{C}(21)-\mathrm{C}(26)$ and $11.5(9)^{\circ}$ for ring $C(31)-C(36)$, respectively. The coordination around P is not regularly tetrahedral with $\mathrm{O}=\mathrm{P}-\mathrm{C}$ angles significantly larger than the
$\mathrm{C}-\mathrm{P}-\mathrm{C}$ angles, in agreement with the increased electron density associated with the $\mathrm{P}=\mathrm{O}$ double bond.

References

Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Dondi, S., Nardelli, M., Pelizzi, C., Pelizzi, G. \& Predieri, G. (1985). J. Chem. Soc. Dalton Trans. pp. 487-491.

Dondi, S., Nardelli, M., Pelizzi, C., Pelizzi, G. \& Predieri, G. (1986). J. Organomet. Chem. 308, 195-206.

Enraf-Nonius (1979). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Harrison, P. G., Sharpe, N. W., Pelizzi, C., Pelizzi, G. \& Tarascon, P. (1983a). J. Chem. Soc. Dalton Trans. pp. 921-926.
Harrison, P. G., Sharpe, N. W., Pelizzi, C., Pelizzi, G. \& Tarascon, P. (1983b). J. Chem. Soc. Dalton Trans. pp. 1687-1693.
Molecular Structure Corporation (1985). TEXRAY Structure Analysis Package. MSC, 3200A Research Forest Drive, The Woodlands, TX77381, USA.
Nardelli, M., Pelizzi, C. \& Pelizzi, G. (1979). Inorg. Chim. Acta, 33, 181-187.
Pelizzi, C. \& Pelizzi, G. (1980a). J. Organomet. Chem. 202, 411-419.
Pelizzi, C. \& Pelizzi, G. (1980b). Inorg. Nucl. Chem. Lett. 16, 451-454.

Structure of Tris(diethyldithiophosphato-S, $S^{\boldsymbol{\gamma}}$)- $\boldsymbol{\mu}$-(diethylthiophosphate- O, S)-(oxazole)- μ_{3}-sulfido-tri- μ_{2}-sulfido-cyclo-trimolybdenum($\mathbf{3} \mathbf{M o}-\mathrm{Mo}$)

By Lu Shao-Fang, Huang Ming-Dong, Huang Jian-Quan,* Huang Zi-Xiang and Huang Jin-Ling*
Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

(Received 5 July 1989; accepted 22 January 1990)

Abstract

Mo}_{3}\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{PS}\right)\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{PS}_{2}\right)_{3}\left(\mathrm{~S}_{4}\right)\left(\mathrm{C}_{3} \mathrm{H}_{3}-\right.\right.\) NO)], $M_{r}=1209 \cdot 694$, triclinic, $P \overline{1}, a=11.931$ (3), b $=13.203$ (4),$\quad c=15 \cdot 014$ (3) $\AA, \quad \alpha=78.17$ (2), $\quad \beta=$ 91.34 (2), $\gamma=109.63$ (2) ${ }^{\circ}, V=2178$ (2) $\AA^{3}, Z=2, D_{x}$ $=1.845 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo K $\alpha)=0.71073 \AA, \quad \mu=$ $15.038 \mathrm{~cm}^{-1}, F(000)=1212, T=296 \mathrm{~K}$. The final R $=0.048$ for 6548 reflections. The crystal structure consists of discrete neutral molecules $\left[\mathrm{Mo}_{3} \mathrm{~S}_{4}\right.$ -$\left.\left\{\mu-\mathrm{SOP}(\mathrm{OEt})_{2}\right\}\left\{\mathrm{S}_{2} \mathrm{P}(\mathrm{OEt})_{2}\right\}_{3}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{ON}\right)\right]$ which contain three Mo-Mo bonds. One of these is bridged

[^0]by an unsymmetrical bidentate ligand obtained by the oxidation of $\mu-\left\{\mathrm{S}_{2} \mathrm{P}(\mathrm{OEt})_{2}\right\}$. The three $\mathrm{Mo}-\mathrm{Mo}$ bond lengths are $2.7328(7), 2.7605(7)$ and 2.7687 (7) \AA. A comparison of the structure with those of $\left[\mathrm{Mo}_{3} \mathrm{~S}_{4}\left\{\mathrm{~S}_{2} \mathrm{P}(\mathrm{OEt})_{2}\right\}_{4}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{ON}\right)\right]$ and $\left[\mathrm{Mo}_{3} \mathrm{OS}_{3}\left\{\mathrm{~S}_{2} \mathrm{P}(\mathrm{OEt})_{2}\right\}_{4}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{ON}\right)\right]$ is given.

Introduction. As part of a systematic study of the reactivity of the molybdenum cluster $\left[\mathrm{Mo}_{3} \mathrm{~S}_{4}\left\{\mathrm{~S}_{2} \mathrm{P}\right.\right.$ $\left.\left.(\mathrm{OEt})_{2}\right\}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ (1) (Huang et al., 1987), we treated $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{3}$ with (1) in $\mathrm{CH}_{3} \mathrm{CN}$ solution containing $0 \cdot 3 \%$ oxazole as impurity. The reaction led unexpectedly to the title compound.
© 1990 International Union of Crystallography

Experimental. 0.4 g of the cluster (1) was dissolved in 10 ml oxazole containing $\mathrm{CH}_{3} \mathrm{CN}, 0.3 \mathrm{~g} \mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{3}$ was added and the mixture heated under reflux. On cooling, brownish-black block-like crystals were obtained.
A crystal of approximate dimensions $0.5 \times 0.2 \times$ 0.7 mm was used. All X-ray measurements were made with a CAD-4 diffractometer. The unit-cell dimensions were obtained by a least-squares treatment of the setting angles of 25 automatically centered reflections with $14^{\circ} \leq \theta($ Mo $K \alpha) \leq 15^{\circ}$. The intensities of 8530 independent reflections with $1<\theta$ $\leq 26^{\circ}$ were measured using the ω-scan technique (0 $\leq h \leq 14,-16 \leq k \leq 16,-18 \leq l \leq 18)$. Scan range $(0.6+0.35 \tan \theta)^{\circ}$, variable scan speed between 0.9 and $5^{\circ} \mathrm{min}^{-1}$. There was no evidence of crystal decay from three standard reflections monitored every 1.5 h of exposure. The crystal orientation, checked after every 200 measurements throughout the experiment, showed no change in setting angle larger than $0 \cdot 12^{\circ} .6548$ reflections were considered observed $[I \geq 3 \sigma(I)]$ and used for the structure determination. Corrections for Lorentz, polarization and empirical ψ-scan absorption applied (max. transmission 99.9%, min. $71 \cdot 4 \%$).

The structure was solved by a combination of Patterson and direct methods (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1982) which gave the positions of the three Mo atoms. The locations of all non-H atoms were obtained from successive difference syntheses. H atoms were not located. Refinements on F by full-matrix leastsquares methods with anisotropic thermal parameters for all atoms led to the final values of R and $w R$ of 0.048 and $0.068, S=1.80$ for 433 refined parameters, $w=1 / \sigma^{2}(F),(\Delta / \sigma)_{\text {max }}=0 \cdot 13$. Final difference syntheses showed residual electron density ranging from $2.43[$ ca $0.90 \AA$ from $\mathrm{P}(4)]$ to $-1.54 \mathrm{e}^{\AA^{-3}}$. Atomic scattering factors and dispersion corrections were taken from International Tables for X-ray Crystallography (1974). All calculations were performed on a VAX- 785 computer with the $S D P$ program package (Frenz, 1985).

Discussion. Final atomic coordinates and equivalent isotropic thermal parameters are listed in Table 1. Important bond lengths and angles are given in Table 2.* A perspective view of the molecule is shown in Fig. 1.

The results suggest that $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{3}$ only catalyzes the replacement of one S atom in the $\mu-\left[\mathrm{S}_{2} \mathrm{P}(\mathrm{OEt})_{2}\right]$

[^1]Table 1. Fractional atomic coordinates and equivalent isotropic temperature factors

$$
\begin{gathered}
B_{\mathrm{eq}}=(4 / 3)\left[a^{2} B(1,1)+b^{2} B(2,2)+c^{2} B(3,3)+a b(\cos \gamma) B(1,2)\right. \\
+a c(\cos \beta) B(1,3)+b c(\cos \alpha) B(2,3)] .
\end{gathered}
$$

	x	y	z	$B_{\text {eq }}\left({ }^{2}{ }^{2}\right)$
Mo(1)	0.19505 (5)	0.26177 (4)	$0 \cdot 30358$ (4)	2.73 (1)
Mo(2)	0.25175 (5)	0.12409 (4)	$0 \cdot 21350$ (4)	2.79 (1)
Mo(3)	$0 \cdot 18939$ (5)	0.29765 (4)	$0 \cdot 11604$ (4)	$2 \cdot 70$ (1)
S	0.3586 (1)	0.3106 (1)	$0 \cdot 2016$ (1)	2.82 (3)
S(12)	0.1134 (2)	0.0734 (1)	0.3316 (1)	3.33 (4)
S(13)	0.0433 (1)	0.2892 (1)	0.2163 (1)	3.28 (4)
S(23)	0.1177 (2)	0.1189 (1)	0.1018 (1)	3.32 (4)
S(01)	0.2753 (2)	0.4582 (1)	0.3273 (1)	3.54 (4)
S(02)	0.0681 (2)	0.2523 (2)	0.4431 (1)	4.03 (4)
S(03)	0.4181 (2)	0.1226 (1)	$0 \cdot 1117$ (1)	3.88 (4)
S(04)	$0 \cdot 2052$ (2)	-0.0823 (1)	0.2195 (1)	4.18 (4)
S(05)	0.3272 (2)	0.3577 (2)	-0.0259 (1)	3.91 (4)
S(06)	0.0533 (2)	0.3372 (2)	-0.0128(1)	4.19 (4)
S(07)	0.4017 (2)	0.0873 (2)	0.3380 (2)	5.03 (5)
O(01)	0.3279 (4)	0.2458 (3)	0.4125 (3)	3.5 (1)
$\mathrm{N}(31)$	0.2499 (5)	0.4858 (4)	0.1011 (4)	3.3 (1)
C(32)	0.1785 (7)	0.5433 (5)	$0 \cdot 1008$ (6)	4.6 (2)
O(33)	0.2405 (6)	0.6517 (4)	0.0918 (5)	6.8 (2)
C(34)	0.3600 (7)	0.6601 (6)	0.0848 (6)	4.8 (2)
C(35)	0.3632 (7)	0.5593 (6)	0.0901 (5)	4.4 (2)
$\mathrm{P}(1)$	0.1625 (2)	0.4103 (1)	0.4357 (1)	3.52 (4)
$\mathrm{P}(2)$	0.3427 (2)	-0.0402 (1)	0.1315 (1)	3.84 (4)
$\mathrm{P}(3)$	0.1909 (2)	0.3742 (1)	-0.0992 (1)	3.77 (4)
$\mathrm{P}(4)$	0.3896 (2)	$0 \cdot 1667$ (2)	0.4325 (1)	4.36 (5)
O(1)	0.2264 (4)	0.4361 (4)	0.5252 (3)	4.8 (1)
O(2)	0.0842 (4)	0.4848 (4)	0.4342 (3)	4.7 (1)
O(3)	0.4327 (5)	-0.1043 (4)	0.1628 (4)	$5 \cdot 2$ (1)
O(4)	0.3137 (5)	-0.0811 (4)	0.0403 (4)	5.6 (1)
O(5)	0.1651 (5)	0.3062 (4)	-0.1758 (3)	5.0 (1)
O(6)	0.2200 (6)	0.4881 (4)	-0.1668 (4)	6.4 (2)
O(03)	$0 \cdot 5165$ (5)	0.2388 (4)	0.4589 (4)	$5 \cdot 4$ (1)
O(04)	0.3427 (6)	0.0860 (5)	0.5290 (4)	6.9 (2)
C(1)	0.3219 (8)	0.3967 (8)	0.5585 (6)	7.1 (3)
C(2)	0.3777 (8)	0.4544 (8)	0.6314 (6)	6.6 (3)
C(3)	0.0086 (7)	0.5011 (6)	0.3606 (6)	$5 \cdot 3$ (2)
C(4)	0.048 (1)	0.6216 (8)	0.3193 (8)	8.5 (3)
C(5)	0.4770 (8)	-0.1139 (7)	0.2531 (6)	6.4 (2)
C(6)	0.5228 (9)	-0.2075 (8)	$0 \cdot 2697$ (8)	8.5 (3)
C(7)	0.2334 (9)	-0.0487 (8)	-0.0220 (7)	7.7 (3)
C(8)	0.2241 (9)	-0.1060 (8)	-0.0999 (6)	6.6 (3)
C(9)	0.273 (1)	0.5919 (8)	-0.1417 (8)	10.3 (4)
C(10)	0.298 (1)	0.6801 (7)	-0.2246 (8)	7.5 (3)
C(11)	0.1215 (8)	0.1841 (6)	-0.1530 (6)	5.8 (2)
C(12)	0.1196 (8)	0.1476 (7)	-0.2409 (6)	6.3 (2)
C(01)	0.6010 (7)	0.1848 (7)	0.4898 (7)	6.2 (2)
C(02)	0.7122 (8)	0.2709 (9)	0.5066 (9)	8.3 (3)
C(03)	0.2256 (8)	0.0087 (8)	0.5448 (7)	6.9 (3)
C(04)	0.2208 (8)	-0.0538 (7)	0.6413 (6)	5.9 (2)

group in (1) by an O atom. In addition, an oxazole ligand substitutes for $\mathrm{H}_{2} \mathrm{O}$ and occupies the loose coordination site on $\mathrm{Mo}(3)$ to form the title compound. The failure of Fe to add to (1) could be interpreted in terms of either an inappropriate oxidition state or steric factors.
The molecular structure of the title compound (4) is similar to those of $\left[\mathrm{Mo}_{3} \mathrm{~S}_{4}\left\{\mathrm{~S}_{2} \mathrm{P}(\mathrm{OEt})_{2}\right\}_{4}-\right.$ $\left.\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{ON}\right)\right]$ (2) and $\left[\mathrm{Mo}_{3} \mathrm{OS}_{3}\left\{\mathrm{~S}_{2} \mathrm{P}(\mathrm{OEt})_{2}\right\}_{4}{ }^{-}\right.$ $\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{ON}\right)$ (3) (Lu, Shang, Huang, Huang \& Lu,

Table 2. Bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$

$\mathrm{Mo}(1)$	$\mathrm{Mo}(2)$	$2.7328(7)$
$\mathrm{Mo}(1)$	$\mathrm{Mo}(3)$	$2.7605(7)$
$\mathrm{Mo}(2)$	$\mathrm{Mo}(3)$	$2.7687(7)$
$\mathrm{Mo}(1)$	S	$2.336(1)$
$\mathrm{Mo}(1)$	$\mathrm{S}(12)$	$2.295(1)$
$\mathrm{Mo}(1)$	$\mathrm{S}(13)$	$2.295(1)$
$\mathrm{Mo}(1)$	$\mathrm{S}(01)$	$2.542(1)$
$\mathrm{Mo}(1)$	$\mathrm{S}(02)$	$2.570(1)$
$\mathrm{Mo}(1)$	$0(01)$	$2.279(4)$
$\mathrm{Mo}(2)$	S	$2.332(1)$
$\mathrm{Mo}(2)$	$\mathrm{S}(12)$	$2.285(1)$
$\mathrm{Mo}(2)$	$\mathrm{S}(23)$	$2.286(1)$
$\mathrm{Mo}(2)$	$\mathrm{S}(03)$	$2.541(1)$
$\mathrm{Mo}(2)$	$\mathrm{S}(04)$	$2.574(1)$
$\mathrm{Mo}(2)$	$\mathrm{S}(07)$	$2.644(2)$
$\mathrm{Mo}(3)$	S	$2.345(1)$
$\mathrm{Mo}(3)$	$\mathrm{S}(13)$	$2.289(1)$
$\mathrm{Mo}(3)$	$\mathrm{S}(23)$	$2.278(1)$
$\mathrm{Mo}(3)$	$\mathrm{S}(05)$	$2.543(2)$
$\mathrm{Mo}(3)$	$\mathrm{S}(06)$	$2.582(2)$
$\mathrm{Mo}(3)$	$\mathrm{N}(31)$	$2.305(4)$
$\mathrm{S}(01)$	$\mathrm{P}(1)$	$1.990(3)$
$\mathrm{S}(02)$	$\mathrm{P}(1)$	$1.992(3)$
$\mathrm{S}(03)$	$\mathrm{P}(2)$	$1.992(2)$
$\mathrm{S}(04)$	$\mathrm{P}(2)$	$1.982(2)$
$\mathrm{S}(05)$	$\mathrm{P}(3)$	$1.990(2)$
$\mathrm{S}(06)$	$\mathrm{P}(3)$	$1.978(2)$
$\mathrm{S}(07)$	$\mathrm{P}(4)$	$1.964(2)$
$\mathrm{O}(01)$	$\mathrm{P}(4)$	$1.448(3)$

Mo(2)	Mo(1)	$\mathrm{Mo}(3)$	$60 \cdot 54$ (2)	Mo(3)	(31)	32))
Mo(1)	$\mathrm{Mo}(2)$	$\mathrm{Mo}(3)$	$60 \cdot 24$ (2)	$\mathrm{Mo}(3)$	$\mathrm{N}(31)$	C(35)	128.1 (4)
Mo(1)	$\mathrm{Mo}(3)$	$\mathrm{Mo}(2)$	59.24 (2)	C(32)	$\mathrm{N}(31)$	C(35)	$106 \cdot 5$ (5)
Mo(2)	$\mathrm{Mo}(1)$	$\mathrm{O}(01)$	92.43 (8)	N(31)	C(32)	O(33)	111.6 (5)
Mo(3)	$\mathrm{Mo}(1)$	$\mathrm{O}(01)$	138.06 (9)	C(32)	O(33)	C(34)	$105 \cdot 0$ (5)
S	$\mathrm{Mo}(1)$	S(02)	$160 \cdot 65$ (5)	O(33)	C(34)	C(35)	$107 \cdot 6$ (6)
S(12)	Mo(1)	S(01)	161.70 (6)	N(31)	C(35)	C(34)	109.5 (6)
S(13)	$\mathrm{Mo}(1)$	O(01)	$168 \cdot 11$ (9)	S(01)	$\mathrm{P}(1)$	S(02)	107•11 (8)
S(01)	$\mathrm{Mo}(1)$	S(02)	77.61 (5)	S(03)	$\mathrm{P}(2)$	S(04)	$106 \cdot 68$ (9)
Mo(1)	$\mathrm{Mo}(2)$	$\mathrm{S}(07)$	91.85 (4)	S(05)	$\mathrm{P}(3)$	S(06)	107.24 (9)
Mo(3)	$\mathrm{Mo}(2)$	S(07)	139.45 (4)	S(07)	$\mathbf{P}(4)$	$\mathrm{O}(01)$	118.2 (2)
S	$\mathrm{Mo}(2)$	S(04)	$160 \cdot 67$ (5)	S(01)	$\mathrm{P}(1)$	O(1)	112.9 (2)
S(12)	$\mathrm{Mo}(2)$	S(03)	160.57 (6)	S(01)	P(1)	O(2)	113.0 (2)
S(23)	$\mathrm{Mo}(2)$	S(07)	$167 \cdot 71$ (5)	S(02)	$\mathrm{P}(1)$	$\mathrm{O}(1)$	$114 \cdot 3$ (2)
S(03)	$\mathrm{Mo}(2)$	S(04)	$77 \cdot 10$ (5)	S(02)	P(1)	O(2)	113.7 (2)
S	$\mathrm{Mo}(3)$	S(06)	161-20 (6)	O(1)	P(1)	O(2)	95.9 (2)
S(13)	$\mathrm{Mo}(3)$	$\mathrm{S}(05)$	$160 \cdot 48$ (5)	S(03)	$\mathrm{P}(2)$	$\mathrm{O}(3)$	113.4 (2)
S(23)	$\mathrm{Mo}(3)$	$\mathrm{N}(31)$	$168 \cdot 5$ (1)	S(03)	$\mathrm{P}(2)$	$\mathrm{O}(4)$	112.7 (2)
S(05)	$\mathrm{Mo}(3)$	$\mathrm{S}(06)$	$77 \cdot 15$ (6)	S(04)	$\mathrm{P}(2)$	$\mathrm{O}(3)$	113.1 (2)
Mo(1)	S	Mo(2)	71.67 (4)	S(04)	$\mathrm{P}(2)$	$\mathrm{O}(4)$	$115 \cdot 5$ (3)
Mo(1)	S	Mo(3)	72.29 (4)	O(3)	$\mathrm{P}(2)$	$\mathrm{O}(4)$	95.5 (2)
Mo(2)	S	$\mathrm{Mo}(3)$	72.61 (4)	S(05)	$P(3)$	O(5)	112.7 (2)
Mo(1)	$\mathrm{S}(12)$	$\mathrm{Mo}(2)$	$73 \cdot 26$ (5)	S(05)	$\mathrm{P}(3)$	O(6)	113.9 (3)
Mo(1)	S(13)	$\mathrm{Mo}(3)$	74.07 (5)	S(06)	$\mathrm{P}(3)$	O(5)	113.8 (2)
Mo(2)	S(23)	Mo(3)	74.71 (5)	S(06)	$\mathrm{P}(3)$	O(6)	114.4 (2)
$\mathrm{Mo}(1)$	$\mathrm{S}(01)$	$\mathrm{P}(1)$	88.01 (6)	O(5)	$\mathrm{P}(3)$	O(6)	94.5 (2)
$\mathrm{Mo}(1)$	S(02)	P(1)	87.20 (6)	S(07)	$\mathrm{P}(4)$	$\mathrm{O}(03)$	112.0 (2)
Mo(2)	S(03)	P(2)	88.38 (7)	S(07)	$\mathrm{P}(4)$	$\mathrm{O}(04)$	112.3 (2)
Mo (2)	S(04)	$\mathrm{P}(2)$	87.64 (6)	$\mathrm{O}(01)$	$\mathbf{P}(4)$	$\mathrm{O}(03)$	$102 \cdot 4$ (2)
Mo(3)	S(05)	$P(3)$	88.23 (7)	$\mathrm{O}(01)$	$P(4)$	$\mathrm{O}(04)$	110.4 (3)
Mo(3)	$\mathrm{S}(06)$	$\mathrm{P}(3)$	87.37 (7)	$\mathrm{O}(03)$	$\mathrm{P}(4)$	$\mathrm{O}(04)$	99.5 (3)
Mo(2)	$\mathrm{S}(07)$	$P(4)$	106.10 (8)				
$\mathrm{Mo}(1)$	$\mathrm{O}(01)$	$P(4)$	129.2 (3)				

Numbers in parentheses are estimated standard deviations in the least significant digits.
1987). The main difference is that μ-\{SOP(OEt $\left.)_{2}\right\}$ acts as the bridging chelating ligand in (4) instead of $\mu-\left\{\mathrm{S}_{2} \mathrm{P}(\mathrm{OEt})_{2}\right\}$ as in (2) and (3). In order to show the influence of this bridging ligand on the bond parameters some representative bond lengths and angles for (2)-(4) are given in Table 3.

Table 3. Some distances (\AA) and angles $\left({ }^{\circ}\right)$ in $\left[\mathrm{Mo}_{3}\left(\mu_{3}-X\right)(\mu-\mathrm{S})_{3} L_{4}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{ON}\right)\right]$ complexes where $L=$ $\mathrm{S} X \mathrm{P}(\mathrm{OEt})_{2}, X=\mathrm{O}$ or S

	(2)	(3)	(4)
Mo-Mo	$2.752(1)$	$2.644(1)$	$2.733(1)$
	$2.760(1)$	$2.628(1)$	$2.761(1)$
	$2.767(1)$	$2.642(1)$	$2.769(1)$
Mo- $\left(\mu_{3}-X\right)$	$2.337 \pm 0.002(\mathrm{~S})$	$2.027 \pm 0.012(\mathrm{O})$	$2.338 \pm 0.005(\mathrm{~S})$
$\mathrm{Mo}-\left(\mu_{2}-\mathrm{S}\right)$	2.282 ± 0.012	2.282 ± 0.007	2.288 ± 0.006
$\mathrm{Mo}-\mathrm{S}(t)^{*}$	2.572 ± 0.014	2.590 ± 0.040	2559 ± 0.017
$\mathrm{Mo}-\mathrm{S}(b) \dagger$	2.617 ± 0.023	2.584 ± 0.003	$2.644(2)$
$\mathrm{Mo}-\mathrm{O}(b) \ddagger$			$2.279(4)$
$\mathrm{Mo}-\mathrm{N}$		$2.316(6)$	$2.281(7)$
$\mathrm{Mo}-\mathrm{S}-\mathrm{P}(t)$	87.66 ± 0.93	87.43 ± 1.51	$2.305(5)$
$\mathrm{Mo}-\mathrm{S}-\mathrm{P}(b)$	107.84 ± 0.31	103.85 ± 1.10	$106.09(08)$
$\mathrm{Mo}-\mathrm{O}-\mathrm{P}$			$129.21(20)$
$\mathrm{S}-\mathrm{P}-\mathrm{S}(t)$	107.27 ± 0.99	108.17 ± 0.83	107.01 ± 0.24
$\mathrm{~S}-\mathrm{P}-\mathrm{S}(b)$	$117.05(14)$	$115.06(15)$	
$\mathrm{O}-\mathrm{P}-\mathrm{S}$			$118.22(17)$

(2) $\left[\mathrm{Mo}_{3}\left(\mu_{3}-\mathrm{S}\right)(\mu-\mathrm{S})_{3}(\mathrm{dtp})_{4}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{ON}\right)\right], \mathrm{dtp}=\mathrm{S}_{2} \mathrm{P}(\mathrm{OEt})_{2}$.
(3) $\left[\mathrm{Mo}_{3}\left(\mu_{3}-0\right)(\mu-\mathrm{S})_{3}(\mathrm{dtp})_{4}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{ON}\right)\right]$.
(4) $\left[\mathrm{Mo}_{3}\left(\mu_{3}-\mathrm{S}\right)(\mu-\mathrm{S})_{3}(\mathrm{dtp})_{3}\left[\mathrm{SOP}(\mathrm{OEt})_{2}\right]\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{ON}\right)\right]$.
$(t)=$ terminal, $(b)=$ bridging.
Wherever possible means, m, and population standard deviations, $\sigma=\left[\left(\sum x^{2}-n \bar{x}^{2}\right) / n\right]^{1 / 2}$, are given in the form $m \pm \sigma$. Individual bond lengths or angles are given with standard deviations in parentheses.
*S atom in terminal chelating dtp ligand.
$\dagger \mathrm{S}$ atom in bridging chelating dtp or $\mathrm{SOP}(\mathrm{OEt})_{2}$ ligand.
$\ddagger \mathrm{O}$ atom in bridging chelating $\operatorname{SOP}(\mathrm{OEt})_{2}$ ligand.

Fig. 1. The molecular structure of $\left[\mathrm{Mo}_{3} \mathrm{~S}_{4}\left\{\mu\right.\right.$ - $\left.\mathrm{SOP}(\mathrm{OEt})_{2}\right\}$ $\left.\left\{\mathrm{S}_{2} \mathrm{P}(\mathrm{OEt})_{3}\right\}_{3}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{ON}\right)\right]$.

There is a substantial shortening of the Mo-Mo distances between (2) and (3) which can be ascribed to the change from $\mu_{3}-\mathrm{S}$ to $\mu_{3}-\mathrm{O}$. Two of the Mo-Mo distances in (4) are comparable to those in (2) but the μ_{2}-OS-bridged bond in (4) is shorter than the corresponding $\mu_{2}-S_{2}$-bridged bond in (2), possibly reflecting the lower steric demand of O compared with S . The Mo- $\mathrm{S}(b)$ bridging chelate bond in (4) is longer than corresponding values in (2) and (3), possibly as a result of the differing electronic properties of O compared with S.

Finally, it is interesting to note that the \{SOP$\left.(\mathrm{OEt})_{2}\right\}$ ligand always adopts a bridging position to form an $\mathrm{Mo}_{2} \mathrm{OSP}$ five-membered ring (Lu , Huang, Huang \& Lu, 1984; Lu, Huang, Lin \& Huang, 1987). We are unaware of any examples of $\left\{\mathrm{SOP}(\mathrm{OEt})_{2}\right\}$ chelating to an Mo atom to form an MoSOP fourmembered ring. This leads us to believe that the $\left[\mathrm{Mo}_{3} \mathrm{~S}_{4}\left\{\mu-\mathrm{SOP}(\mathrm{OEt})_{2}\right\}_{3} . L_{3}\right]$ cluster compound may be stable.

References

Frenz, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands.

Huang, J.-Q., Lu, S.-F., Shang, M.-Y., Lin, X.-T., Huang, M.-D., Lin, Y.-H., Wu, D.-M., Zhuang, H.-H., Huang, J.-L. \& LU, J.-L. (1987). J. Struct. Chem. 6, 219-233.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Lu, S.-F., Huang, J.-Q., Huang, J.-L. \& Lu, J.-X. (1984). Jiegou Hиaxue, Engl. Ed. 3, 151-154.
Lu, S.-F., Huang, J.-Q., Lin, Y.-H. \& Huang, J.-L. (1987). Acta Chim. Sin. 3, 199-209.
lu, S.-F., Shang, M.-Y., Huang, J.-Q., Huang, J.-L. \& Lu, J.-X. (1987). Sci. Sin. B30, 147-160.

Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Acta Cryst. (1990). C46, 2039-2041

Structure of catena-Bis[μ-chloro-chloro- μ-quinoxaline- N, N^{\prime}-copper(II)]

By Seppo Lindroos* and Paavo Lumme
Division of Inorganic Chemistry, Department of Chemistry, University of Helsinki, Vuorik. 20, SF-00100 Helsinki, Finland

(Received 20 December 1989; accepted 22 February 1990)

Abstract

Cu}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2}\right) \mathrm{Cl}_{2}\right]_{n}, \quad M_{r}=264 \cdot 60\), monoclinic, $\quad C 2 / m, \quad a=13.237(5), \quad b=6.935(3), \quad c=$ 9.775 (3) $\AA, \beta=107.88$ (2) ${ }^{\circ}, V=853.9$ (5) $\AA^{3}, Z=4$, $D_{m}=2.01$ (2) $, \quad D_{x}=2.06 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \alpha)=$ $0.71069 \AA, \mu\left(\right.$ Mo K α) $=30.0 \mathrm{~cm}^{-1}, F(000)=524, T$ $=295 \mathrm{~K}$, final $R=0.025$ for 979 unique reflections. The polymeric structure is composed of double chains in which quinoxaline molecules form bridges between Cu atoms along the b axis and the two chains are bound together by two Cl atoms. The coordination polyhedron about the Cu atom is a trigonal bipyramid with three Cl atoms in the equatorial plane with the quinoxaline N atoms occupying the apical positions.

Introduction. Quinoxaline, like other nitrogen heterocycles with two N atoms in the molecule, has a tendency to form polymeric structures in which quinoxaline forms a bridge between two metal atoms (Lumme, Lindroos \& Lindell, 1987; Richardson, Hatfield, Stoklosa \& Wasson, 1973).

The metal-bridging capabilities of pyrazine, which quinoxaline chemically resembles, have been well studied (Santoro, Mighell \& Reimann, 1970; Darriet, Haddad, Duesler \& Hendrickson, 1979; Havnes, Rettig, Sams, Thompson \& Trotter, 1987). Unlike

[^2]pyrazine only a few structures of quinoxaline metal complexes have been determined. To learn more about the coordination behaviour of polymeric quinoxaline ($=\mathrm{Q}$) compounds, we have determined the structure of $\mathrm{Cu}(\mathrm{Q}) \mathrm{Cl}_{2}$, the results of which we present here.

Experimental. Quinoxaline (0.5 mmol) in ethanol $\left(100 \mathrm{~cm}^{3}\right)$ was added to $\mathrm{CuCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol})$ in ethanol $\left(100 \mathrm{~cm}^{3}\right)$. The mixture was carefully heated (at $\sim 313 \mathrm{~K}$) for 6 h and allowed to stand for several weeks. The green crystals that formed were filtered and washed successively with ethanol and ether. The crystal selected for data collection had dimensions $0.2 \times 0.2 \times 0.4 \mathrm{~mm}$. The density was determined by flotation. The unit-cell parameters were determined by a least-squares fit of the setting angles of 25 reflections with $13 \cdot 2 \leq 2 \theta \leq 27.7^{\circ}$, measured on a Nicolet $P 3 F$ diffractometer. The intensity measurements were carried out at room temperature (295 K) with graphite-monochromatized Mo $K \alpha$ radiation and the $\omega-2 \theta$ scan technique. The scan rate varied from 2.0 to $29.3^{\circ} \mathrm{min}^{-1}$.

A set of 1056 unique reflections was obtained from 1113 reflections measured in the range $3 \leq 2 \theta \leq 55^{\circ}$ ($h 0 \rightarrow 19, k 0 \rightarrow 11, l-14 \rightarrow 14$). 979 reflections with $F_{o}>4 \sigma\left(F_{o}\right)$ were considered as observed and used in refinement. Three strong reflections (133, 204 and

[^0]: * Invited Professor at Fuzhou University.

 0108-2701/90/112036-04\$03.00

[^1]: * Lists of structure factors, anisotropic thermal parameters bond angles and least-squares planes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52989 (38 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * Author to whom correspondence should be addressed.

